

CCD_FT2K Frame Transfer CCD Image Sensor 1920 x 1920 Element Image Area

Features

- 1920 x 1920 Photosite Frame Transfer CCD Array
- 16 μm x 16 μm Pixel
- 30.72mm x 30.72mm Image Area
- 100% Fill Factor
- Readout Noise Less Than 5 Electrons at 1MHz
- Dynamic Range > 75dB
- 16 Single Stage Source Follower Output Channels
- Three-Phase Buried Channel NMOS Image area
- Three-Phase Buried Channel Readout Registers
- Multi-Pinned Phase (MPP) optional

General Description

The CCD_FT2K is a 1920 x 1920 image element solid state Charge Coupled Device (CCD) Frame Transfer sensor. This CCD is intended for use in high-resolution scientific, space based, Industrial, and commercial electro-optical systems.

The CCD_FT2K is organized in a single array of 1920 horizontal by 1920 vertical photosite image region with a 1920 x 960 vertical photosite storage region on each end of the device.

The pixel spacing is $16\mu m \times 16\mu m$. For dark reference, each readout line is proceeded by 4 dark pixels.

The CCD_FT2K is offered in an MPP mode frontside illuminated version for decreased dark signal.

Functional Description

The following functional elements are illustrated in the block diagram:

Image Sensing Elements: Incident photons pass through a transparent polycrystalline silicon gate structure creating electron hole pairs. The resulting photoelectrons are collected in the photosites during the integration period. The amount of charge accumulated in each photosite is a linear function of the localized incident illumination intensity and integration period.

The photosite structure is made up of contiguous CCD elements with no voids or inactive areas. In addition to sensing light, these elements are used to shift image data vertically.

Vertical Charge Shifting: The Frame Transfer architecture of the CCD_FT2K provides video information as a single sequential readout of 1920 lines containing 1920 photosites. At the end of an integration period the ΦV_1 , ΦV_2 , and ΦV_3 clocks are used to transfer charge vertically through the CCD array to the storage region. The vertical storage pixels then transfer charge to the horizontal readout register. Vertical columns are separated by a channel stop region to prevent charge migration.

Horizontal Charge Shifting ΦS_1 , ΦS_2 and ΦS_3 are polysilicon gates used to transfer charge horizontally to the output amplifier. The horizontal transport register is twice the size of the photosite to allow for vertical binning. For frame transfer configurations, the charge must be read out through the eight amplifiers at the bottom and the eight amplifiers at the top of the image frame storage region.

The transfer of charge into the horizontal register is the result of a vertical shift sequence. This register has 4 additional register cells between the first pixel of each line and the output amplifier. The output from these locations contains no signal and may be used as a dark level reference.

The last clocked gate in the Horizontal registers is twice as large as the others and can be used to horizontally bin charge. This gate requires its own clock, which may be tied to ΦS_1 for normal full resolution readout.

The reset FET in the horizontal readout, clocked appropriately with ΦR , allows binning of adjacent pixels.

Output Amplifier: The CCD_FT2K has 16 output amplifiers evenly distributed along each Horizontal register. They are single stage FET floating diffusion amplifiers with a reset MOSFET tied to the input gate.

Charge packets are clocked to a pre-charged capacitor whose potential changes linearly in response to the number of electrons delivered. When this potential is applied to the input gate of an NMOS amplifier, a signal, V_{out} , at the output pin is produced. The capacitor is then reset via the reset MOSFET with ΦR to a precharge level prior to the arrival of the next charge packet except when horizontally binning. The output amplifier drain is tied to VDD.

The source is connected to an external load resistor to ground and constitutes the video output from the device.

Definition of Terms

Charge-Coupled Device A charge-coupled device is a monolithic silicon structure in which discrete packets of electron charge are transported from position to position by sequential clocking of an array of gates.

Vertical Transport Clocks ΦV_1 , ΦV_2 , ΦV_3 the clock signals applied to the vertical transport register. The nomenclature used is Al1, Al2, and Al3 for the image sections and AS1, AS2, and AS3 for the storage sections of the CCD.

Horizontal Transport Clocks ΦS_1 , ΦS_2 , ΦS_3 the clock signals applied to the horizontal transport registers. The nomenclature used is S1, S2, and S3.

Reset Clock Φ **R** the clock applied to the reset switch of the output amplifier.

Dynamic Range The ratio of saturation output voltage to RMS noise in the dark. The peak-to-peak random noise is 4-6 times the RMS noise output.

Saturation Exposure The minimum exposure level that produces an output signal corresponding to the maximum photosite charge capacity. Exposure is equal to the product of light intensity and integration time.

Responsivity The output signal voltage per unit of exposure.

Spectral Response Range The spectral band over which the response per unit of radiant power is more than 10% of the peak response.

Photo-Response Non-Uniformity The difference of the response levels between the most and the least sensitive regions under uniform illumination (excluding blemished elements) expressed as a percentage of the average response.

Dark Signal The output signal is caused by thermally generated electrons. Dark signal is a linear function of integration time and an exponential function of chip temperature.

Vertical Transfer Gate Φ **VTG** Gate structures adjacent to the end row of photosites and the horizontal transport registers. The charge packets accumulated in the photosites are shifted vertically through the array. Upon reaching the end row of photosites, the charge is transferred in parallel via the transfer gates to the horizontal transport shift registers whenever the transfer gate voltage goes low.

Pixel Picture element or sensor element, also called photo element or photosite.

CCD Block Diagram

TYPICAL CCD DC OPERATING CHARACTERISTICS							
Symbol	Parameter	Range min nom max		Unit	Remarks		
V _{DD}	DC Supply Voltage		25.0		V		
V _{RD}	Reset Drain Voltage		16.0		V		
V _{OTG}	Output Transfer Voltage	-2.0	1.0	2.0	V		
V _{GND}	Substrate Ground		0.0		V		
V _{sc}	Scupper		20.0		V		

Typical Clock Voltages							
Symbol	Parameter	High	Low	Unit	Remarks		
Vφ _{S(1,2,3)}	Horizontal Multiplexer Clock	+5.0	-5.0	V	Note 1		
Vφ _{SG}	Summing Gate Clock	+5.0	-5.0	V	Note 1		
V¢ _{V(1,2,3)}	Vertical Array Clocks	+3.0	-10.0	V	Note 1		
Vφ _{RG}	Reset Gate Clock	+8.0	-2.0	V	Note 1		

Note 1: ϕ S = 200pF, ϕ V = 15,000pF. All clock rise and fall times should be < 10 ns.

AC Characteristics							
Symbol	Parameter	Range min nom max		Unit	Remarks		
V _{ODC}	Output DC Level		17.0		V		
Z	Suggested Load Resistor	1.0	5.0	20.0	kΩ		

Standard test conditions are nominal MPP clocks and DC operating Voltages, 1 MHz Horizontal Data Rate, 6µSec Vertical shift cycle.

Performance Specifications							
Symbol	Parameter	min	Range min nom max		Unit	Remarks	
V _{SAT}	Saturation Output Voltage Full Well Capacity Output Amp Sensitivity	125K	700 180K 4.0	220K	mV e- μV/e-	Note 1	
PRNU	Photo Response Non-Uniformity Peak-to-Peak		10		%V _{SAT}		
DSNU	Dark Signal Non-Uniformity Peak-to- Peak			1.0	mV		
DC	Dark Current	0.025	<1.0	2.0	nA/cm ²	Note 2	
R	Responsitivity		1.0		Vµj/cm²		
Rms	Noise		3 -20		e-		

Note 1: Maximum well capacity is achieved in Buried Channel Mode.

Note 2: Values shown are for 25°C. Dark current doubles for every 5°-7°C.

Connector	Connector Pin	Pin Label	Function	Value
P1	1	GND	Ground	0V
	2	AS1U	Upper Storage 1 TTL Clock	0V to 5V
	3	N5V	Negative Voltage Logic	-5V
	4	AS2U	Upper Storage 2 TTL Clock	0V to 5V
	5	GND	Ground	0V
	6	AS3U	Upper Storage 3 TTL Clock	0V to 5V
	7	N5V	Negative Voltage Logic	-5V
	8	GND	Ground	0V
	9	GND	Ground	0V
	10	Al1U	Upper Image Phase1 TTL Clock	0V to 5V
	11	N5V	Negative Voltage Logic	-5V
	12	AI2U	Upper Image Phase2 TTL Clock	0V to 5V
	13	GND	Ground	0V
	14	AI3U	Upper Image Phase3 TTL Clock	0V to 5V
	15	N5V	Negative Voltage Logic	-5V
	16	GND	Ground	0V
	17	GND	Ground	0V
	18	S1U	Upper Serial Phase1 TTL Clock	0V to 5V
	19	N5V	Negative Voltage Logic	-5V
	20	GND	Ground	0V
	21	GND	Ground	0V
	22	S2U	Upper Serial Phase2 TTL Clock	0V to 5V
	23	SMAG	Serial Magnitude Voltage	10V
	24	GND	Ground	0V
	25	GND	Ground	0V
	26	S3U	Upper Serial Phase3 TTL Clock	0V to 5V
	27	SMAG	Serial Magnitude Voltage	10V
	28	GND	Ground	0V
	29	GND	Ground	0V
	30	SWU	Upper Summing Well TTL Clock	0V to 5V
	31	SMAG	Serial Magnitude Voltage	10V
	32	GND	Ground	0V
	33	GND	Ground	0V
	34	GND	Ground	0V
	35	SMAG	Serial Magnitude Voltage	10V
	36	AMAG	Array Magnitude Voltage	13V
	37	GND	Ground	0V
	38	GND	Ground	0V
	39	SMAG	Serial Magnitude Voltage	10V
	40	AMAG	Array Magnitude Voltage	13V
	41	GND	Ground	0V
	42	AH	Array Clock Static High Level	3V
	43	SWL	Summing Well Clock Static Low Level	-5V
	44	GND	Ground	0V
	45	GND	Ground	0V
	46	GND	Ground	0V
	47	OTGT	Output Transfer Gate Voltage	-1V
	48	CCDBUFA3	CCD Buffered Output	
	49	GND	Ground	0V

50	GND	Ground	0V
51	SH	Serial Clock Static High Level	5V
52	CCDBUFB3	CCD Buffered Output	
53	GND	Ground	0V
54	GND	Ground	0V
55	SL	Serial Clock Static Low Level	-5V
56	CCDBUFA4	CCD Buffered Output	
57	GND	Ground	0V
58	GND	Ground	0V
59	RDT	Reset Drain Voltage	16V
60	CCDBUFB4	CCD Buffered Output	
61	GND	Ground	0V
62	GND	Ground	0V
63	ODT	Output Drain Voltage	25V
64	CCDBUFA1	CCD Buffered Output	
65	GND	Ground	0V
66	GND	Ground	0V
67	ODT	Output Drain Voltage	25V
68	CCDBUFB1	CCD Buffered Output	
69	GND	Ground	0V
70	GND	Ground	0V
71	ODT	Output Drain Voltage	25V
72	CCDBUFA2	CCD Buffered Output	
73	GND	Ground	0V
74	GND	Ground	0V
75	ODT	Output Drain Voltage	25V
76	CCDBUFB2	CCD Buffered Output	
77	GND	Ground	0V
78	GND	Ground	0V
79	SCT	Scupper Voltage	20V
80	GND	Ground	0V
81	GND	Ground	0V
82	GND	Ground	0V
83	RGMAG	Reset Clock Magnitude Voltage	10V
84	AMAG	Array Magnitude Voltage	13V
85	GND	Ground	0V
86	GND	Ground	0V
87	RGMAG	Reset Clock Magnitude Voltage	10V
88	AMAG	Array Magnitude Voltage	13V
89	GND	Ground	0V
90	AL	Array Clock Static Low Level	-10V
91	RGMAG	Reset Clock Magnitude Voltage	10V
92	GND	Ground	0V
93	GND	Ground	0V
94	GND	Ground	0V
95	RGMAG	Reset Clock Magnitude Voltage	10V
96	RGL	Reset Clock Static Low Level	-2V
97	GND	Ground	0V
98	GND	Ground	0V
99	RGMAG	Reset Clock Magnitude Voltage	10V
100	RGU	Reset Gate TTL Clock	0V to 5V

101	GND	Ground	0V
102	P3V3	Positive Voltage Reset Driver	3.3V
103	P5V	Positive Voltage Logic	5V
104	P3V3	Positive Voltage Reset Driver	3.3V
105	GND	Ground	0V
106	GND	Ground	0V
107	P5V	Positive Voltage Logic	5V
108	AI3U	Upper Image Phase3 TTL Clock	0V to 5V
109	GND	Ground	0V
110	AI2U	Upper Image Phase2 TTL Clock	0V to 5V
111	P5V	Positive Voltage Logic	5V
112	Al1U	Upper Image Phase1 TTL Clock	0V to 5V
113	GND	Ground	0V
114	GND	Ground	0V
115	PSV	Positive Voltage Logic	5V
116	AS3U	Upper Storage Phase3 TTL Clock	0V to 5V
117	GND	Ground	0V
118	AS2U	Upper Storage Phase2 TTL Clock	0V to 5V
119	P5V	Positive Voltage Logic	5V
120	AS1U	Upper Storage Phase1 TTL Clock	0V to 5V
121	GND	Ground	0V
122	GND	Ground	0V
123	GND	Ground	0V
124	GND	Ground	0V
125	GND	Ground	0V
126	GND	Ground	0V
127	GND	Ground	0V
128	GND	Ground	0V
129	GND	Ground	0V
130	GND	Ground	0V
131	GND	Ground	0V
132	GND	Ground	0V

Connector	Connector Pin	Pin Label	Function	Value
P2	1	GND	Ground	0V
	2	AS1L	Lower Storage 1 TTL Clock	0V to 5V
	3	N5V	Negative Voltage Logic	-5V
	4	AS2L	Lower Storage 2 TTL Clock	0V to 5V
	5	GND	Ground	0V
	6	AS3L	Lower Storage 3 TTL Clock	0V to 5V
	7	N5V	Negative Voltage Logic	-5V
	8	GND	Ground	0V
	9	GND	Ground	0V
	10	Al1L	Lower Image Phase1 TTL Clock	0V to 5V
	11	N5V	Negative Voltage Logic	-5V
	12	AI2L	Lower Image Phase2 TTL Clock	0V to 5V
	13	GND	Ground	0V
	14	AI3L	Lower Image Phase3 TTL Clock	0V to 5V
	15	N5V	Negative Voltage Logic	-5V
	16	GND	Ground	0V

17	GND	Ground	0V
18	S1L	Upper Serial Phase1 TTL Clock	0V to 5V
19	N5V	Negative Voltage Logic	-5V
20	GND	Ground	0V
21	GND	Ground	0V
22	S2L	Lower Serial Phase2 TTL Clock	0V to 5V
 23	SMAG	Serial Magnitude Voltage	10V
 24	GND	Ground	0V
25	GND	Ground	0V
26	S3L	Lower Serial Phase3 TTL Clock	0V to 5V
27	SMAG	Serial Magnitude Voltage	10V
28	GND	Ground	0V
29	GND	Ground	0V
30	SWLin	Lower Summing Well TTL Clock	0V to 5V
31	SMAG	Serial Magnitude Voltage	10V
32	GND	Ground	0V
33	GND	Ground	0V
34	GND	Ground	0V
35	SMAG	Serial Magnitude Voltage	101/
36		Array Magnitude Voltage	13V
37	GND	Ground	
38	GND	Ground	01/
30	SMAG	Serial Magnitude Voltage	101/
40		Array Magnitude Voltage	12\/
40		Ground	
41		Array Clock Static High Loval	2\/
42		Summing Wall Clock Static Low Loval	
45		Cround	-50
 44		Ground	00
 45		Ground	00
 40		Qutnut Transfer Cate Voltage	11/
47			-10
48	CLDBUFAD		
49		Ground	00
50	GND	Ground	
51	SH	Serial Clock Static High Level	50
52	CCDB0FB6	CCD Buffered Output	
53	GND	Ground	00
54	GND	Ground	
55	SL		-5V
56	CCDBUFA5		
57	GND	Ground	00
 58	GND	Ground	00
 59	RDB	Reset Drain Voltage	16V
 60	CCDBUFB5	CCD Buffered Output	
 61	GND	Ground	
 62	GND	Ground	
63	ODB	Output Drain Voltage	25V
64	CCDBUFA8	CCD Buttered Output	
65	GND	Ground	OV
66	GND	Ground	0V
67	ODB	Output Drain Voltage	25V

68	CCDBUFB8	CCD Buffered Output	
69	GND	Ground	0V
70	GND	Ground	0V
71	ODB	Output Drain Voltage	25V
72	CCDBUFA7	CCD Buffered Output	
73	GND	Ground	0V
74	GND	Ground	0V
75	ODB	Output Drain Voltage	25V
76	CCDBUFB7	CCD Buffered Output	
77	GND	Ground	0V
78	GND	Ground	0V
79	SCB	Scupper Voltage	20V
80	GND	Ground	0V
81	GND	Ground	0V
82	GND	Ground	0V
83	RGMAG	Reset Clock Magnitude Voltage	10V
84	AMAG	Array Magnitude Voltage	13V
85	GND	Ground	0V
86	GND	Ground	0V
87	RGMAG	Reset Clock Magnitude Voltage	10V
88	AMAG	Array Magnitude Voltage	13V
89	GND	Ground	0V
90	AL	Array Clock Static Low Level	-10V
91	RGMAG	Reset Clock Magnitude Voltage	10V
92	GND	Ground	0V
93	GND	Ground	0V
94	GND	Ground	0V
95	RGMAG	Reset Clock Magnitude Voltage	10V
96	RGL	Reset Clock Static Low Level	-2V
97	GND	Ground	0V
98	GND	Ground	0V
99	RGMAG	Reset Clock Magnitude Voltage	10V
100	RGLin	Reset Gate TTL Clock	0V to 5V
101	GND	Ground	0V
102	P3V3	Positive Voltage Reset Driver	3.3V
103	P5V	Positive Voltage Logic	5V
104	P3V3	Positive Voltage Reset Driver	3.3V
105	GND	Ground	0V
106	GND	Ground	0V
107	P5V	Positive Voltage Logic	5V
108	AI3L	Lower Image Phase3 TTL Clock	0V to 5V
109	GND	Ground	OV
110	AI2L	Lower Image Phase2 TTL Clock	0V to 5V
111	P5V	Positive Voltage Logic	5V
112	Al1L	Lower Image Phase1 TTL Clock	0V to 5V
113	GND	Ground	OV
114	GND	Ground	0V
115	P5V	Positive Voltage Logic	5V
116	AS3L	Lower Storage Phase3 TTL Clock	0V to 5V
117	GND	Ground	0V
118	AS2L	Lower Storage Phase2 TTL Clock	0V to 5V

119	P5V	Positive Voltage Logic	5V
120	AS1L	Lower Storage Phase1 TTL Clock	0V to 5V
121	GND	Ground	0V
122	GND	Ground	0V
123	GND	Ground	0V
124	GND	Ground	0V
125	GND	Ground	0V
126	GND	Ground	0V
127	GND	Ground	0V
128	GND	Ground	0V
129	GND	Ground	0V
130	GND	Ground	0V
131	GND	Ground	0V
132	GND	Ground	0V

Quantum Efficiency Enhancements

The CCD_FT2K CCD area arrays can be backside thinned for increased QE. The incident illumination enters through the backside of the array, and since no photons are absorbed in the polysilicon gate structures, the QE is increased. Also available are front side illuminated devices which can be coated with a fluorescent dye that absorbs UV light and fluoresces in the visible range. This provides CCD response at wavelengths less than 400nm.

Cosmetic Grading

Device grading helps to establish a ranking for the image quality that a CCD will provide. Blemishes are characterized as spurious pixels exceeding 10% of V_{SAT} with respect to neighboring elements. Blemish content is determined in the dark, at various illumination levels, and for different device temperatures. The CCD_FT2K is available in various standard grades, as well as custom selected grades. Consult

ANDANTA GmbH for available grading information and custom selections.

Warranty

Within twelve months of delivery to the end customer ANDANTA GmbH will repair or replace, at our option, any image sensor product if any part is found to be defective in materials or workmanship. Contact ANDANTA GmbH for assignment of warranty return number and shipping instructions to ensure prompt repair or replacement.

Certification

ANDANTA GmbH certifies that all products are carefully inspected and tested prior to shipment and will meet all of the specification requirements under which it is furnished.

Copyright © 2014 ANDANTA GmbH; Rev3.1 dtd. June 27 2014. All rights reserved. The information contained in this document has been summarized to the best of our knowledge. However, no responsibility is accepted for the consequences of any use thereof. Furthermore, the information provided may be changed without explicit notice.

ANDANTA GmbH Detektortechnologie
Ilzweg 7+9 • 82140 Olching/Deutschland
Tel: +49 8142 41058-0 • Fax: +49 8142 41058-29
e-mail: epost@andanta.de • www.andanta.de